
Exception handling 



Exception Handling 
The Exception Handling in Java is one of the powerful mechanism to handle the runtime errors so that 

the normal flow of the application can be maintained. 

Exception is an abnormal condition. 

In Java, an exception is an event that disrupts the normal flow of the program. It is an object which is 

thrown at runtime. 
Exception Handling is a mechanism to handle runtime errors. 

Advantage of Exception Handling 
The core advantage of exception handling is to maintain the normal flow of the application. An 

exception normally disrupts the normal flow of the application; that is why we need to handle exceptions. 

there are 10 statements in a Java program and an exception occurs at statement 5; 

the rest of the code will not be executed, i.e., statements 6 to 10 will not be 

executed. However, when we perform exception handling, the rest of the statements 

will be executed. That is why we use exception handling in Java. 

https://www.javatpoint.com/java-tutorial


Hierarchy of Java Exception classes: 
The java.lang.Throwable class is the root class of Java Exception hierarchy inherited by two subclasses: 

Exception and Error.  



 
Types of Java Exceptions 

 • There are three types of exceptions namely: 

1.Checked Exception 

2.Unchecked Exception 

3.Error 

 

1) Checked Exception 

The classes that directly inherit the Throwable class except RuntimeException 
and Error are known as checked exceptions. For example, IOException, 
SQLException, etc. Checked exceptions are checked at compile-time. 

2) Unchecked Exception 

The classes that inherit the RuntimeException are known as unchecked 
exceptions. For example, ArithmeticException, NullPointerException, 
ArrayIndexOutOfBoundsException, etc. Unchecked exceptions are not checked 
at compile-time, but they are checked at runtime. 

3) Error 

Error is irrecoverable. Some example of errors are OutOfMemoryError, 
VirtualMachineError, AssertionError etc. 

 



Java Exception Keywords: 
Java provides five keywords that are used to handle the exception. 

Keyword Description 

try The "try" keyword is used to specify a block where we should place an exception code. It 

means we can't use try block alone. The try block must be followed by either catch or finally. 

catch The "catch" block is used to handle the exception. It must be preceded by try block which 

means we can't use catch block alone. It can be followed by finally block later. 

finally The "finally" block is used to execute the necessary code of the program. It is executed 

whether an exception is handled or not. 

throw The "throw" keyword is used to throw an exception. 

throws The "throws" keyword is used to declare exceptions. It specifies that there may occur an 

exception in the method. It doesn't throw an exception. It is always used with method 

signature. 













public class TryCatchExample1 {   

      public static void main(String[] args) {   

                 int data=50/0; //may throw exception    

                System.out.println("rest of the code");   

      }   

} 



















public class NestedTryBlock{     

 public static void main(String args[]){    

   try{     

      try{     

               System.out.println("going to divide by 0");     

               int b =39/0;     

           }   

      catch(ArithmeticException e)   

          {   

                     System.out.println(e);   

          }     

         try{     

                 int a[]=new int[5];     

                 a[5]=4;     

             }   

         catch(ArrayIndexOutOfBoundsException e)   

             {         System.out.println(e);      }     

    System.out.println("other statement");     

  }   

    catch(Exception e)   

  {      System.out.println("handled the exception (outer catch)");       }     

    System.out.println("normal flow..");     

 }     

}   







throw: 

The throw keyword in Java is used to explicitly throw an exception from a method or any block of code. We can 

throw either checked or unchecked exception. The throw keyword is mainly used to throw custom exceptions. 

  

Instance must be of type Throwable or a subclass of Throwable. For example Exception is a sub-class of 

Throwable and user defined exceptions typically extend Exception class. 

The flow of execution of the program stops immediately after the throw statement is executed and the nearest 

enclosing try block is checked to see if it has a catch statement that matches the type of exception. If it finds a 

match, controlled is transferred to that statement otherwise next enclosing try block is checked and so on. If no 

matching catch is found then the default exception handler will halt the program.  

https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/
https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/
https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/
https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/
https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/
https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/
https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/




throws 

throws is a keyword in Java which is used in the signature of method to indicate that this method might throw one of 

the listed type exceptions. The caller to these methods has to handle the exception using a try-catch block.  

•throws keyword is required only for checked exception and usage of throws keyword for unchecked exception is 

meaningless. 

•throws keyword is required only to convince compiler and usage of throws keyword does not prevent abnormal 

termination of program. 

•By the help of throws keyword we can provide information to the caller of the method about the exception. 

•unchecked exception: under our control so we can correct our code. 

•error: beyond our control. For example, we are unable to do anything if there occurs VirtualMachineError or 

StackOverflowError. 









In Java, we can create our own exceptions that are derived classes of the Exception class. Creating our own 

Exception is known as custom exception or user-defined exception. Basically, Java custom exceptions are used to 
customize the exception according to user need. 

Using the custom exception, we can have your own exception and message. Here, we have passed a string to the 

constructor of superclass i.e. Exception class that can be obtained using getMessage() method on the object we have 
created. 
Java exceptions cover almost all the general type of exceptions that may occur in the programming. However, we 

sometimes need to create custom exceptions. 

In order to create custom exception, we need to extend Exception class that belongs to java.lang package. 

User defined exceptions: 



class InvalidAgeException  extends Exception   

{   

    public InvalidAgeException (String str)   

    {   

        // calling the constructor of parent Exception   

        super(str);   

    }   

}   

  // class that uses custom exception InvalidAgeException   

public class TestCustomException1   

{   

    // method to check the age   

    static void validate (int age) throws InvalidAgeExcepti

on{          

  if(age < 18){   

        // throw an object of user defined exception   

        throw new InvalidAgeException("age is not valid to v

ote");     

    }   

       else {    

        System.out.println("welcome to vote");    

        }    

     }     

      

 // main method   

    public static void main(String args[])   

    {   

        try   

        {   

            // calling the method    

            validate(13);   

        }   

        catch (InvalidAgeException ex)   

        {   

            System.out.println("Caught the exception");   

           // printing the message from InvalidAgeException o

bject              System.out.println("Exception occured: " + e

x);   

        }   

          System.out.println("rest of the code...");     

    }   

}   





 
Multithreading in Java 

 • Multithreading in Java is a process of executing multiple threads 
simultaneously for maximum utilization of the CPU. 

• A thread is a lightweight sub-process, the smallest unit of processing. 
Multiprocessing and multithreading, both are used to achieve multitasking. 

• However, we use multithreading than multiprocessing because threads use a 
shared memory area. They don't allocate separate memory area so saves 
memory, and context-switching between the threads takes less time than 
process. 

• In Multi-threading, multiple activities can proceed concurrently in the same 
program. 

• Advantages of Java Multithreading 

1) Threads are independent and you can perform multiple operations at the same 
time. 

2) You can perform many operations together, so it saves time. 

3) Threads are independent, so it doesn't affect other threads if an exception 
occurs in a single thread. 

https://www.javatpoint.com/java-tutorial


Life Cycle of a Thread 

A thread goes through various stages in its life cycle. This life cycle is controlled by JVM (Java Virtual Machine). These 

states are: 

1.New 

2.Runnable 

3.Running 

4.Waiting 

5.Terminated(Dead) 

 



1.New: In this phase, the thread is created using class "Thread class".It remains in this state till the program starts the 

thread. It is also known as born thread. 

2.Runnable: In this page, the instance of the thread is invoked with a start method. The thread control is given to scheduler 

to finish the execution. It depends on the scheduler, whether to run the thread. 

3.Running: When the thread starts executing, then the state is changed to "running" state. The scheduler selects one thread 

from the thread pool, and it starts executing in the application. 

4.Waiting: This is the state when a thread has to wait. As there multiple threads are running in the application, there is a 

need for synchronization between threads. Hence, one thread has to wait, till the other thread gets executed. Therefore, this 

state is referred as waiting state. 

5.Dead: This is the state when the thread is terminated. The thread is in running state and as soon as it completed 

processing it is in "dead state". 

Thread Priorities 
• Every Java thread has a priority that helps the operating system determine the order in which threads are 

scheduled. 

• Java thread priorities are in the range between MIN_PRIORITY (a constant of 1) and MAX_PRIORITY (a constant 

of 10). By default, every thread is given priority NORM_PRIORITY (a constant of 5). 

• Threads with higher priority are more important to a program and should be allocated processor time before lower-

priority threads.  



Threads can be created by using two mechanisms :  

1.Extending the Thread class  

2.Implementing the Runnable Interface 

Thread creation by extending the Thread class 
We create a class that extends the java.lang.Thread class. This class overrides the run() method available in the 

Thread class. A thread begins its life inside run() method. We create an object of our new class and call start() method 

to start the execution of a thread. Start() invokes the run() method on the Thread object. 

Thread class provides constructors and methods to create and perform operations on a thread. Thread class 

extends Object class and implements Runnable interface. 

https://www.javatpoint.com/java-constructor
https://www.javatpoint.com/object-class












Synchronization in java is the capability to control the access of multiple threads to any shared resource. 

Synchronization in java  

Multi-threaded programs may often come to a situation where multiple threads try to access the same resources 

and finally produce erroneous results.  

Java Synchronized Method 

If we use the Synchronized keywords in any method then that method is Synchronized Method.  

•It is used to lock an object for any shared resources.  

•The object gets the lock when the synchronized method is called.  

•The lock won’t be released until the thread completes its function. 
Syntax: 

Acess_modifiers synchronized return_type method_name (Method_Parameters) { 

// Code of the Method. 

} 

https://www.geeksforgeeks.org/multithreading-in-java/
https://www.geeksforgeeks.org/multithreading-in-java/
https://www.geeksforgeeks.org/multithreading-in-java/
https://www.geeksforgeeks.org/multithreading-in-java/


class Table{   

void printTable(int n){//method not synchr

onized   

   for(int i=1;i<=5;i++){   

     System.out.println(n*i);   

     try{   

      Thread.sleep(400);   

     }catch(Exception e){System.out.println

(e);}     }   

   }   

}   

   

class MyThread1 extends Thread{   

Table t;   

MyThread1(Table t){   

this.t=t;   

}   

public void run(){   

t.printTable(5);   

}   

 }   

 

class MyThread2 extends Thread{   

Table t;   

MyThread2(Table t){   

this.t=t;   

}   

public void run(){   

t.printTable(100);   

}   

}   

   

class TestSynchronization1{   

public static void main(String args[]){   

Table obj = new Table();//only one object   

MyThread1 t1=new MyThread1(obj);   

MyThread2 t2=new MyThread2(obj);   

t1.start();   

t2.start();   

}   

}   



//example of java synchronized method   

class Table{   

 synchronized void printTable(int n){//synchronized meth

od   

   for(int i=1;i<=5;i++){   

     System.out.println(n*i);   

     try{   

      Thread.sleep(400);   

     }catch(Exception e){System.out.println(e);}   

   }   

   

 }   

}   

   

class MyThread1 extends Thread{   

Table t;   

MyThread1(Table t){   

this.t=t;   

}   

public void run(){   

t.printTable(5);   

}   

   

}   

 

class MyThread2 extends Thread{   

Table t;   

MyThread2(Table t){   

this.t=t;   

}   

public void run(){   

t.printTable(100);   

}   

}   

   

public class TestSynchronization2{   

public static void main(String args[]){   

Table obj = new Table();//only one object   

MyThread1 t1=new MyThread1(obj);   

MyThread2 t2=new MyThread2(obj);   

t1.start();   

t2.start();   

}   

}   



Synchronized Block in Java 
Synchronized block can be used to perform synchronization on any specific resource of the method. 

Suppose you have 50 lines of code in your method, but you want to synchronize only 5 lines, you can use 

synchronized block. 

If you put all the codes of the method in the synchronized block, it will work same as the synchronized method. 
Points to remember for Synchronized block 

•Synchronized block is used to lock an object for any shared resource. 

•Scope of synchronized block is smaller than the method. 

Syntax to use synchronized block 

synchronized (object reference expression) {    

  //code block    

}   



class Table{   

   

 void printTable(int n){   

   synchronized(this){//synchronized block   

     for(int i=1;i<=5;i++){   

      System.out.println(n*i);   

      try{   

       Thread.sleep(400);   

      }catch(Exception e){System.out.println(e);}   

     }   

   }   

 }//end of the method   

}   

   

class MyThread1 extends Thread{   

Table t;   

MyThread1(Table t){   

this.t=t;   

}   

public void run(){   

t.printTable(5);   

}   

   

}   

class MyThread2 extends Thread{   

Table t;   

MyThread2(Table t){   

this.t=t;   

}   

public void run(){   

t.printTable(100);   

}   

}   

   

public class TestSynchronizedBlock1{   

public static void main(String args[]){   

Table obj = new Table();//only one object   

MyThread1 t1=new MyThread1(obj);   

MyThread2 t2=new MyThread2(obj);   

t1.start();   

t2.start();   

}   

}   



Static Synchronization 
If you make any static method as synchronized, the lock will be on the class not on object. 

class Table{   

  synchronized static void printTable(int n){   

   for(int i=1;i<=10;i++){   

     System.out.println(n*i);   

     try{   

       Thread.sleep(400);   

     }catch(Exception e){}   

   }   

 }   

}   

 class MyThread1 extends Thread{   

public void run(){   

Table.printTable(1);   

}   

}   

class MyThread2 extends Thread{   

public void run(){   

Table.printTable(10);   

}   

}   

 

   

 class MyThread3 extends Thread{   

public void run(){   

Table.printTable(100);   

}   

}   

 class MyThread4 extends Thread{   

public void run(){   

Table.printTable(1000);   

}   

}   

 public class TestSynchronization4{   

public static void main(String t[]){   

MyThread1 t1=new MyThread1();   

MyThread2 t2=new MyThread2();   

MyThread3 t3=new MyThread3();   

MyThread4 t4=new MyThread4();   

t1.start();   

t2.start();   

t3.start();   

t4.start();   

}   

}   

Output: 1 2 3 4 5 6 7 8 9 10 10 20 30 40 50 60 70 80 90 100 100 200 300 400 500 600 700 800 900 1000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000  



• Inter-thread communication in Java is a technique through which multiple threads communicate with 

each other. 

• It provides an efficient way through which more than one thread communicate with each other by 

reducing CPU idle time. CPU idle time is a process in which CPU cycles are not wasted. 

• When more than one threads are executing simultaneously, sometimes they need to communicate with 

each other by exchanging information with each other. A thread exchanges information before or after it 

changes its state. 

• There are several situations where communication between threads is important. 

• For example, suppose that there are two threads A and B. Thread B uses data produced by Thread A 

and performs its task. 

• If Thread B waits for Thread A to produce data, it will waste many CPU cycles. But if threads A and B 

communicate with each other when they have completed their tasks, they do not have to wait and check 

each other’s status every time. 

• Thus, CPU cycles will not waste. This type of information exchanging between threads is called inter-

thread communication in Java. 

Inter thread communication in Java can be achieved by using three methods provided by Object class of java.lang 

package. They are: 

1. wait()  2. notify()   3. notifyAll() 

These methods can be called only from within a synchronized method or synchronized block of code otherwise, an 

exception named IllegalMonitorStateException is thrown. 

All these methods are declared as final. Since it throws a checked exception, therefore, you must be used these 

methods within Java try-catch block. 

https://www.scientecheasy.com/2020/05/java-try-catch-block.html/
https://www.scientecheasy.com/2020/05/java-try-catch-block.html/
https://www.scientecheasy.com/2020/05/java-try-catch-block.html/


wait() Method in Java 

 

wait() method in Java notifies the current thread to give up the monitor (lock) and to go into sleep state until 

another thread wakes it up by calling notify() method. This method throws InterruptedException. 

 

 

Various forms of wait() method allow us to specify the amount of time a thread can wait. They are as follows: 

Syntax: 

 

 

 

 

 

 

All overloaded forms of wait() method throw InterruptedException. If time is specified in the wait() method, a 

thread can wait for maximum time. 

Note: 

1. A monitor is an object which acts as a lock. It is applied to a thread only when it is inside a synchronized 

method. 

2. Only one thread can use monitor at a time. When a thread acquires a lock, it enters the monitor. 

3. When a thread enters into the monitor, other threads will wait until first thread exits monitor. 

4. A lock can have any number of associated conditions. 

public final void wait()  

public final void wait(long millisecond) throws InterruptedException 
 public final void wait(long millisecond, long nanosecond) throws InterruptedException  



notify() Method in Java 

The notify() method wakes up a single thread that called wait() method on the same object. If more than one thread 

is waiting, this method will awake one of them.  

The general syntax to call notify() method is as follows: 
 public final void notify() 

notifyAll() Method in Java 

The notifyAll() method is used to wake up all threads that called wait() method on the same object. The thread 

having the highest priority will run first. 

The general syntax to call notifyAll() method is as follows: 

  public final void notifyAll() 



without using wait() and notify() method 








